
T H E  E F F E C T  O F  H E A T  T R A N S F E R  ON U N S T E A D Y  

P E R I O D I C  M O T I O N  O F  A G A S  IN T U B E S  

A.  S .  V l a d i s l a v l e v  a n d  B .  M .  P i s a r e v s k i i  

The one -d imens iona l  uns teady motion of a gas in a s t r a igh t  tube is d e s c r i b e d  with the a id  of 
the equations of continuity,  of motion,  of s ta te ,  and of energy;  in addition, f r ic t ion  and t h e r m -  
al flow a r e  a s s u m e d  to be quas i s t a t i ona ry .  Solution of the l i n e a r i z e d  equations shows that  
when heat  t r a n s f e r  i s  taken into account,  "ent ropic"  waves of p r e s s u r e  and ve loc i ty  appear  
in the gas .  As the r e s u l t  of heat  t r a n s f e r  changes a lso  occur  in the propagat ion  cons tants  for  
o r d i n a r y  waves;  there  is ,  compared  with an adiabat ic  p r o c e s s ,  an i n c r e a s e  in the d i s t r ibu t ion  
of f r i c t ion .  

In de sc r i b ing  the uns teady  motion of a gas in a hor izon ta l  tube of constant  c r o s s  sec t ion  i t  is  c u s t o m -  
a r y  to use  the s y s t e m  of equations of continuity,  of motion,  and of s ta te  [1] 

apat k ~ (pW) = 0 (1) 

aw aw  -I ap + F = O 
ot + W ~'7~- + p ox 

p = pgB~ 

Here  x i s  a coord ina te  whose d i rec t ion  coincides  with that of the mean flow veloc i ty ;  t is  the t ime;  
p(x, t), W(x, t), p(x, t), and T(x, t) a r e ,  r e s p e c t i v e l y ,  the p r e s s u r e ,  ve loc i ty ,  densi ty ,  and t e m p e r a t u r e  of the 
gas ,  ave raged  over  a given c r o s s  sect ion;  m o r e o v e r ,  the ve loc i ty  of the gas is  a s s u m e d  to be s ign i f ican t ly  
l e s s  than the ve loc i ty  of sound; the quantity F,  defined below, is  a s s oc i a t e d  with f r ic t ion .  

To obtain the p r e s s u r e  and ve loc i ty  it is  n e c e s s a r y  to supplement  these  equations with a r e l a t i on  
which takes  into account the heat  t r a n s f e r  between the gas and the sur rounding  med ium.  If it  be a s s u m e d  
as in [1] that  the p ropaga t ion  of waves of p r e s s u r e  and ve loc i ty  of the gas is  a p r o c e s s  which takes  place  
i s o t h e r m a l l y  (T = To), we obtain the equation p = c~o, where  the speed  of sound c o = g~-~vT0, so that  the 
actual  number  of unknowns is  d imin i shed  by two. If i t  be a s sumed  that the wave propagat ion p r o c e s s  is  
adiabat ic  [2], then the number  of v a r i a b l e s  is  a lso  d e c r e a s e d ,  s ince ,  in this  ca se ,  with l i nea r i za t ion ,  we 
have the va l id  r e l a t ion  Pl = c2pl,  where  c o = k g ~  0 is  the speed of sound and T o is  the s t a t i ona ry  c o m -  
ponent of the gas t e m p e r a t u r e ,  Pi and Pl being the nons ta t ionary  components  of the p r e s s u r e  and dens i ty  of 
the gas .  

By taking into account in the in i t ia l  equations the p r o c e s s  of heat  t r a n s f e r  between a gas and i ts  s u r -  
rounding medium,  we a r e  able ,  f i r s t  of a l l ,  to solve the p rob lem of when such assumpt ions  a r e  jus t i f i ab le  
and, secondly ,  we can ca lcu la te  the gas dynamic p r o c e s s e s  in por t ions  of tubular  s y s t e m s  where  the heat  
t r a n s f e r  is  in tense  (condensers ,  hea t  exchangers ) .  The d i f f icul t ies  which a r i s e  in solving the l a t t e r  p r o b -  
l em compel  us to a s sume  that the s y s t e m  is  f r i c t i on l e s s  (F = 0) ; in [3] an approx imate  method was worked 
out in this  case  for  solving the wave equation with the ve loc i ty  of sound va r i ab l e  with d i s tance ,  the method 
being based  on the use of in teg ra l  c h a r a c t e r i s t i c s .  The s ame  p r ob l e m  was handled in [4] by a computa t ion-  
al method using nonhomogeneous e l e c t r i c a l  l ines ,  and in [5] there  were  deduced o rd ina ry  d i f fe ren t ia l  equa-  
t ions ,  solvable  in t e r m s  of spec ia l  functions,  to which the wave equation reduces  when the mean gas  t e m -  
p e r a t u r e  v a r i e s  with length accord ing  to va r ious  laws .  With r e f e r e n c e  to the l a t t e r  pape r s  i t  should be 
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noted that the main reason for variat ion of the gas tempera ture  was considered to be the presence  of heat 
t r ans fe r  between the tube and the surrounding medium; in addition, the authors,  without analyzing the heat 
t r ans fe r  p rocess ,  assumed the law of variat ion of the mean gas tempera ture  with length to be given. In 
these papers  no account is taken of the heat t r ans fe r  between the gas and the tube walls, thus substantially 
affecting the process  of the propagation of p re s su re  and velocity waves in the gas.  

To solve the problem of est imating the influence of heat t r ans fe r  on gasdynamic p rocesses  in pipe- 
line sys tems  it is neces sa ry  to adjoin to Eqs.  (1) the energy equation 

.Q++, [.(oJ + 
The main difficulties in the analysis  of Eqs.  (1) and (2) a re  connected with the determinat ion of the 

magnitudes of the thermal  flow Q and the fr ict ion F for  a nonstat ionary regime.  We shall assume that the 
frictional p rocess  is quasis tat ionary [1]; then for the turbulent motion of piston c o m p r e s s o r s ,  which is 
charac te r i s t i c  of pipeline sys tems ,  we have, for the Reynolds number range R = 105-10 s 

F = ~W ~ (~ = ~/~ 3, / d) (3) 

where )t is the coefficient in the D a r c y - W e i s b a c h  formula,  and d is the tube d iameter .  In determining the 
thermal  flow Q we shall also cons ider  the heat t r ans fe r  p rocess  to be quasis tat ionary;  such an approach is 
justified because,  for w = 10-100 sec -i  the period of the oscil lat ions of the nonstat ionary component of the 
gas velocity turns out to be 2-3 o rde rs  l a rge r  than the t ime required to establish the t empera tu re  in the 
laminar  sublayer .  If  we take the tempera tures  in the resul t ing thermal  flow to be the instantaneous t e m -  
pera ture  of the gas T(x, t) and the external  t empera ture ,  considerable complexit ies a r i se  since the heat 
t r ans fe r  coefficient i tself  depends on the difference of the t empera tu res  [6]. 

A more  suitable choice of defining tempera tures  is the instantaneous gas tempera ture  T(x, t) and the 
wall t empera tu re  Tw(x), moreove r  it may  be assumed that as a consequence of the high oscil lational f r e -  
quency the nonstat ionary component of the gas tempera ture  has no influence on the wall t empera ture ,  so 
that the la t ter  is determined by the static tempera ture  of the gas at the tube entrance and by the external 
heat exchange. We r e m a r k  that for  re la t ively shor t  portions of pipeline sys tems ,  which do not pass  through 
heat exchangers ,  the mean gas tempera ture  is pract ical ly  constant with length since the external  heat ex-  
change is very  insignificant.  We shall consider  the portions of pipelines passing through c o m p r e s s o r s  and 
heat exchangers  to be split up into portions for  which the mean gas t empera tu re  on each portion is constant.  
Then for  both cases  

T~ (x) -- r0, Q = r162 [ r  (x, t) --  r0], ~ = ~cpP-v.W (4) 

Here a is the heat emiss ion coefficient for forced turbulent motion of the gas in the tube, for which, 
in a given case,  ColbournTs formula  is applicable [6]; molecular  heat conduction is neglected. 

We note that the energy equation (2) can, with the aid of the sys tem (1), be rewri t ten  in one of the fol-  
lowing forms:  

[ w~.g] OT R~ o~ ( D o o ) D c~T+ +R~ ox p " ~ / - ' - - " ~ ' + w - T z  at or- + (2 = 0 
ap _.~__4_ W ~  x kp (k=  c~ 

(5) 

(6) 

If we introduce the entropy S = c v l n p -  cp ln  p, then f rom Eqs. (6) we have 

DSdt = T' (--~-- - Q) (7) 

If in Eqs.  (1) and (7) we pute F = 0, Q = 0, we obtain the case  t rea ted  in [7]; we show below that, in ad-  
dition, there is variat ion in compar ison with an isentropic p rocess .  

We l inearize the sys tem (1), (6) by decomposing the quantities p, W, p, and T into stat ic  and small  
dynamic components:  

P = P o + P ~ ,  W = W o + W ~ ,  P - - P o + P l ,  T = T  o + / ' 1  
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We ob ta in  

Op, OWl O& 
'or +Po --y~+W.~=0 

OW~ [OW~ 0t,1 
Po---~-- + P0Wo ~ + ~ + 2~P0WoWr+ ~W02Pl ---- 0 

Pl - -  gR~ - -  g/FToPx = 0 

o ~ 7 -  P o W o  ~ - -  kPo ~ - -  kpoWo ~ - -  

- - 2  (k --  t) ~P0W0~P~ + kgR~ = 0 

(8) 

C o n s i d e r i n g  on ly  f o r c e d  o s c i l l a t i o n s  ( e x p e r i m e n t a l  s t u d i e s ,  s e e  [2], have  shown tha t  the  c h a r a c t e r -  
i s t i c  o s c i l l a t i o n s  in  p i p e l i n e  s y s t e m s  of  p i s t o n  c o m p r e s s o r s  a r e  d a m p e d  r a p i d l y  and have  p r a c t i c a l l y  no e f -  
f e c t  on the  g a s d y n a m i c  p r o c e s s )  we s e e k  a so lu t i on  of the s y s t e m  (8) in the  f o r m  

p~ (z, t) = p, (~)e!?', W~'(~, t) - -  W~ (~:) e; ~'~, ~),. ( r ,  t) = ~,, (z) e ~ t  

r i  (z,  t) = T1 (z) ei~t 

If  we  e l i m i n a t e  the  t e m p e r a t u r e  T l (x  ) f r o m  t h e s e  equa t i ons  we  ob ta in  a s y s t e m  of  o r d i n a r y  d i f f e r e n -  
tia1 equa t i ons  of  the  f i r s t  o r d e r ;  the  c o r r e s p o n d i n g  c h a r a c t e r i s t i c  equa t ion  h a s  the  f o r m  

w h e r e  

det I ax~ 1 = 0 (~, ~ = l, 2, 3) (9) 

an = - -  co* ( 1 o +  WoV) - -  2 (k - -  l )U~o 2 - -  ~P-'/.Woco ~ 

alz == ]~ + Wo7 + k~P -~/~ Wo a13 = - -  3 (k - -  t )~PoWo* , a21 = ]o) + Wo7 

tt2Z = O, a2a = PoY, a3t  = ~ W o * ,  aa~ -~ Y 

a3a = Po (1o  + W o T  + 2 ~ W o )  (co = Vkg n~ 

F o r  the  c a s e  ~ = 0 the  r o o t s  of  t h i s  equa t ion  a r e  e a s i l y  found: 

io /c0 io (10) 
7'1 = Wo ~ T2----- co + Wo ' 7"~ = co - -  Wo 

The p r e s e n c e  of  t h r e e  c h a r a c t e r i s t i c  r o o t s  t e s t i f i e s  to the  f ac t  tha t  r e j e c t i o n  of  i s e n t r o p i c i t y  l e a d s  to  
a t h i r d  phenomenon ,  an  " e n t r o p i c  w a v e , "  which ,  as  i s  e v ide n t  f r o m  the  m a t r i x  (9) f o r  ~ = 0 and y = - j w / W  0 
e f f ec t s  on ly  the  t e m p e r a t u r e  and d e n s i t y  of t he  g a s ;  the  v a l u e s  of  p l (x ,  t) and Wl(x  , t) r e m a i n  the  s a m e  a s  
fo r  an i s e n t r o p i c  p r o c e s s .  To f ind  the  p r o p a g a t i o n  c o n s t a n t s  T fo r  the  g e n e r a l  c a s e  (~ e 0) we d i s c a r d ,  in 
the  c o e f f i c i e n t s  of the equa t ion  in  y ob t a ined  f r o m  Eq.  (9), t e r m s  of o r d e r  (W0/c0)2 (for gas  v e l o c i t i e s  e n -  
c o u n t e r e d  in  p r a c t i c e  in p ipe l i ne  s y s t e m s  of p i s t o n  c o m p r e s s o r s  th i s  quan t i ty  i s  of o r d e r  10-2). I f  we s e l e c t  
the  r o o t s  (10) a s  the  z e r o t h  a p p r o x i m a t i o n ,  we  f ind  the  f i r s t  a p p r o x i m a t i o n  fo r  the  r o o t s  of  the  r e s u l t i n g  
equa t ion  by  N e w t o n ' s  m e t h o d .  Wi th  a p r e c i s i o n  su f f i c i e n t  f o r  c a l c u l a t i o n s  of  p i p e l i n e  s y s t e m s ,  the  r e s u l t s  
have  the  f o r m  

- - io  ~p_,/,. ~q,3 = ~/,,) 

We no te  tha t  i n d e p e n d e n t l y  of  the  v a l u e s  found i t  fo l lows  f r o m  the f o r m  of  the  m a t r i x  (9) tha t :  i f  7 i s  
a r o o t  of  Eq.  (9), t hen  in  a s i ng l e  r o w  no two of the  t h r e e  c o e f f i c i e n t s  can  va n i sh ;  t h i s  m e a n s  t ha t  the  p r e s -  
ence  of  f r i c t i o n  l e a d s  to the  a p p e a r a n c e  of  e n t r o p y  w a v e s  of p r e s s u r e  and v e l o c i t y  of  t he  g a s .  In  add i t i on ,  
t ak ing  hea t  exchange  into accoun t  a l s o  l e a d s  to  a change  in  the  p r o p a g a t i o n  c o n s t a n t s  f o r  o r d i n a r y  w a v e s :  
f r o m  the  e x p r e s s i o n s  f o r  ~/2 and Y3 i t  i s  ev i de n t  tha t  in c o m p a r i s o n  wi th  the  a d i a b a t i c  c a s e ,  to wi th in  the 
l i m i t s  of p r e c i s i o n  c h o s e n ,  the i m a g i n a r y  p a r t  of  the  c o n s t a n t  d i f fus ion  does  not  v a r y ,  but  t h e r e  i s ,  in fac t ,  
a 2570 g r o w t h  in  the  d i s t r i b u t e d  f r i c t i o n  f o r  k = 1 A ,  P = 0.7.  The  s o l u t i o n  o f  t he  s y s t e m  (8), u s i n g  the  s a m e  
a s s m n p t i o n s  a s  b e f o r e ,  m a y  be  w r i t t e n  in  the  f o r m  

Pl = [A1 e~'x + A~ e ~  + A a e ~ l  e J~t 
(12) 
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To T1 = -~o [--Ale"X + (k -- l) A~e "~ + (k -- i) A3ev*~] e j'~t (13) 

(14) 

Wx=_~o I i~Woco P-'l'Axe"~" + A~e'r~x-- A3e'~x] ej'~t (15) 

A peculiar i ty of entropy waves in compar ison with ordinary waves consis ts  in the fact that they decay 
much more  rapidly.  In fact,  the rat io of the amplitudes of the oscil lat ions at two points, separated f rom 
one another by a distance l ,  for entropy and ordinary waves, is,  respect ively ,  exp Re(y 1 l) and exp Re(~ 2 l) .  
F rom this, taking the relat ions (11) and (3) into account, it follows that for an ord inary  wave and an entropy 
wave to undergo the same decrease  in amplitude, the rat io l / d  in the f i r s t  case  must  be at leas t  ten t imes 
l a rge r  than in the second. Or, to put it differently, for l / d  > 80 (~ = 0.04) the amplitude of an entropy 
wave has decreased  tenfold. Thus, if the initial amplitude of an entropy wave is not too large  [we note that 
in relat ions (14) and (15) the coefficients are  of o rder  10-1-10 -2 in absolute value) its influence manifests  
i tself  only over  a short  entrance portion of the tube. 
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